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SUMMARY

Nonlinear wave-wave interactions in turbulent jets were investigated based
on the integrated energy of each scale of motion in a cross section of the
jet. The analysis indicates that two frequency components in the axisymmetric
mode can interact with other background frequencies in the axisymmetric mode,
thereby amplifying an enormous number of other frequencies. Two frequency com-
ponents in a single helical mode cannot, by themselves, amplify other frequency
components. But combinations of frequency components of helical and axisymmet-
ric modes can amplify other frequencies in other helical modes. The present
computations produce several features consistent with experimental observations
such as (1) dependency of the interactions on the initial phase differences,
(2) enhancement of the momentum thickness under multifrequency forcing, and
(3) an increase in background turbulence under forcing. In a multifrequency-
excited jet, mixing enhancement was found to be a result of the turbulence
enhancement rather than simply the amplification of forced wave components.
The excitation waves pump energy from the mean flow to the turbulence, thus
enhancing the latter. The high-frequency waves enhance the turbulence close
to the jet exit, but the low-frequency waves are most effective further
downstream.

INTRODUCTION

The study of artificially excited shear flows may provide insight into the
physical mechanisms governing the onset and evolution of turbulence in shear
flows. Such studies can provide a guide for formulating new predictive turbu-
lence models and for controlling 1ift and drag as well as turbulent mixing and
transport. Motivated by understanding laminar-turbulent transitions, Miksad
(refs. 1 and 2) excited a shear layer with two frequencies of comparable growth
rates. The two imposed waves interacted nonlinearly, generating the sum and
difference modes and the harmonics and subharmonics of the forcing frequencies.
Some of these components were found to grow and interact with others, generat-
ing additional components. Finally an enormous number of waves were generated,
leading to a complete transition to fully turbulent flow. Because of the com-
plexity of this experiment, most later experiments concentrated on single-
frequency excitation.

Single-frequency excitation has now been studied by many researchers:
for exampie, Binder and Favre-Marinet (refs. 3 and 4), Ho and Huang (ref. 5),
Mankbadi and Liu (ref. 6), Mankbadi (ref. 7), Winant and Browand (ref. 8) and
Zaman and Hussain (ref. 9), to mention only a few. An excellent review for
the work in this area is given in an article by Ho and Huerre (ref. 10). In
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general, these investigations indicate that the shear-layer spreading rate can
be controlled effectively by forcing.

The possibility of using two-frequency forcing to extend the range over
which the flow can be controlled has been explored by Wygnanski and Petersen
(ref. 11), Raman-and Rice (ref. 12), and Bradley (ref. 13). These observations
indicate that forcing at two freguencies makes the shear layer grow faster than
forcing at either frequency alone at the same forcing level. Thus, combined-
mode forcing is not only significant to the fundamental understanding of the
laminar-turbulent transition, but is also significant to the technologically
important problem of mixing and turbulence control. The importance of two-
frequency forcing has motivated several studies to understand the wave-wave
interactions in two-frequency excitations. Numerical simulations of temporal
instability in a shear layer (refs. 14 and 15) and of spatial stability in a
taminar axisymmetric shear layer (ref. 16) show that the wave-wave interaction
process is highly dependent on the phase alignment. This was confirmed exper-
imentally by Zhang, Ho, and Monkewitz (ref. 17) for the shear layer. For a
round jet, Arbey and Ffowcs-Williams (ref. 18) observed a phase-dependent sup-
pression of the first subharmonic in the pressure spectrum when the jet was
excited at the natural frequency and its first subharmonic. Furthermore, the
experimental observations of Raman and Rice (ref. 12) show that for high levels
of excitations, the phase development of the stability waves is a highly non-
linear process.

This report presents formulations for multifrequency interactions in the
axisymmetric or azimuthal modes. These wave-wave interactions are coupled
with their interactions with the fine-grained background turbulence. The pur-
pose is to provide a model for a multifrequency excited jet and to increase
the understanding of the later stages of the laminar-turbulence transition.
High-amplitude excitations are emphasized so that the maximum effect on jet
mixing can be observed. The nonlinear development of the wave amplitudes are
coupled with the nonlinear development of the phase angles, which Raman and
Rice's (ref. 12) observations indicate to be significant in high-amplitude
excitations.

ANALYSIS

The problem considered here is that of a turbulent jet issuing from a noz-
zle of radius R, the Mach number is small, and the compressibility effects
are negligible. The coordinate system is (x,r,¢) where x is the streamwise
direction, r 1is the radial direction, and ¢ is the azimuthal angle. The
corresponding velocity components are u, v, and w. Velocities are normal-
ized by the jet exit velocity U, distances by the nozzle radius R, and the

pressure by pUg, where p is the fluid density. The time t is normalized
by R/Ug.

The_fluid motion is split into three kinds of motion: a time-averaged

motion Uj(x); a periodic, organized, large-scale wavelike structure dj(x,t);
and a background, fine-scale random turbulence u%(ﬁ,r). Thus,

U O = TG00 + UGt + up(x ) (1)



and the pressure, P, is similarly split. An overbar denotes the usual time
average of the flow quantity. The periodic, wavelike component is taken to be
represented by a finite number of frequency and azimuthal components. Thus,

Ux,t) = :;: };: Upn (XoTOeXp(=iw t + IN $) + cc (2)

where cc or * denotes the complex conjugate. MWe consider here the interac-
tions among these frequency and azimuthal components along with their interac-
tions with the mean flow and the background turbulence. These interactions

are viewed within the framework of the energy exchanges among the different
scales of motion. To derive the governing equations for each flow component,
the usual phase-averaging technique (refs. 19 and 20) is extended to apply to

a given azimuthal number in addition to the usual definition with respect to
the frequency. Thus,

<Z Z gmn(l,r)exp(-wnt + iNn¢)> = gmh(x,r)exp(—wmt + iNn¢)
m n

The mean flow momentum equation is derived by substituting the decomposi-
tion of equation (1) into the full, unsteady Navier-Stokes equations for incom-
pressible flow in cylindrical coordinates and by taking the time average. The
mean flow energy equation is obtained by multiplying each component of the mean
flow momentum equation by the corresponding velocity and adding. The result-
ing mean flow kinetic energy equation is
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where

The kinetic energy equation of the turbulent motion is derived as fol-
lows. The time-averaged momentum equation is subtracted from the full momen-
tum equation. Each component of the momentum equation is multiplied by the
corresponding velocity component u., and the three components are added and
time averaged. Triple correlations that contain an odd number of random compo-
nents are zero; those containing an even number of random components are not
zero. The resulting kinetic energy equation of the turbulence is
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The energy equation for a wave component of frequency wp and azimuthal
number Np 1is obtained as follows. The full momentum equation is first phase
averaged with respect to the frequency under consideration, and the time-
averaged equation is subtracted from the phase-averaged one. The resulting
equatton contains all the azimuthal components of frequency wp. To separate
the azimuthal component, we multiply the w—momentum equation by exp(-iNy$) and
integrate it over ¢. This produces a momentum equation for the mn-frequency-
azimuthal component. This equation is multiplied by the corresponding velocity
Gi,mn to yield the kinetic energy equation for the mn-wave component:
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The dynamic equation for the wave-induced stresses Ti4 mn 1s derived as
follows. The ui-momentum equation is multiplied by wu;, and vice versa, to
form the equations for the instantaneous Reynolds stre%ses. By taking the
difference between the phase average and time average of the instantaneous
Reynolds stresses, the following equation for F’J is obtained:
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Integral Energy Equations

The integral energy equation of the mean flow is obtained by applying the
boundary-layer-type approximations to the mean quantities. These approxima-
tions imply that d( )/ax << a()/ar, V << U, and that the mean flow is
axisymmetric with W = 0. These approximations are appiied to equation (3),
viscous terms are neglected, and the equation is integrated over r and ¢.
The resulting mean flow energy equation is given by

o] a0 (-]

1d 3 ~~ 3U —— aU
T J Usr dr = -J -uv o r dr - J -utvt ey dr (73)
0 0 0

As it will be shown later on, uv, in general, contains azimuthal terms
that can distort the axisymmetry of the mean flow. These azimuthal terms van-
ish upon integration over ¢. Therefore the integration over ¢ was necessary
to be consistent with the assumed axisymmetry of the mean flow. Equation (7a)
therefore represents the mean flow energy in a transverse section of the jet.

Equation (7a) can be written as

o]

J U3 r dr = <MW - MT (7b)
0
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where © s the momentum thickness and MW and MT are the first and second
integrals in the right side of equation (7a), respectively. Equation (7)
states that the growth of the momentum thickness (the drain of the mean flow



energy) is governed by the mean flow production of the wave components MW and
by the mean flow production of the turbulence MT.

The integral energy equation for the random turbulence is obtained by
applying boundary-layer-type approximations to the mean quantities and by han-
dling the viscous dissipation terms in the usual manner. After integrating
over r and ¢, the turbulence kinetic energy equation reduces to
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This equation can be written as
d | 30 (8b)
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0

Equations (8a) and (8b) state that the development of the turbulence energy is
governed by its production by the mean flow MT, the energy transfer from the
wave WT, and the turbulence dissipation dis.

The integral energy equation for the mn-wave component is obtained from
the full energy equation (5) in the same manner:

© o] @

_ ~ =~ a0 —
J U an r dr = J “UrnVmn 3r r dr - J ¢mn r dr
0 0 0

Q.lQ.
>

(o]

au
~ o~ i,mn 1o~ ~2 vy
1 -
+ (<uiuj>mn Ix *r Von 2mn T Yo omn I dr
j (9a)
0
where
3.7 Yy m L 153 Mmn
ij,nn axj romn ¢¢,mn r ¢r,mn



This system of equations can be written in the form

0

d - =
dax J U an rdr = Mwmn - men + NNmn (9b)
0

which states that the development of the wave energy is governed by the mean
flow production of this particular wave MWy, by the energy transfer between
this wave and the turbulence WTp,, and by the interactions between this wave
and other existing waves Whpy,.

14

Mode Decomposition and Interactions

The integral energy equations (egs. (7) to (9)) are the basis for the
present analysis. In these equations, terms representing wave interactions
are given in their most general forms, which are applicable to any number of
frequency and azimuthal components. The decomposition of these terms for a
given number of wave components yields

i, = mZ; Uy pn@XPC-Tupt + N ) + cc

In the mean flow energy equation (7), the production of all waves is given by

~~ 3
MW = —J -uv 3r r dr 10
0

~

The waves' Reynolds stress uv can, in general, be written as

Ty - * * : _
uv = Z (Umnvmn + cc) + Z {umkvmexp[MNk NQ)¢] + cc} an
m,n

m,k,2
k#2

The first summation is over the product uv* of the same wave. These terms
are axisymmetric irrespective of their azimuthal number. The second summation
over the product uv* s produced by the waves of the same frequency but dif-
ferent azimuthal numbers. These terms are not axisymmetric and therefore
destroy the symmetry of the mean flow. Note that these terms exist only if
there is more than one azimuthal component of the same frequency. Thus, this
is consistent with Cohen and Wygnanski's (ref. 21) conclusion that single mode
excitation cannot destroy the axisymmetry of the mean flow. The azimuthal
terms appearing in equation (11) vanish when integrated over ¢. Therefore
these terms redistribute the mean flow energy in the azimuthal direction but
do not contribute to the total energy integrated over ¢. Since the mean flow
energy from equation (10) is integrated over ¢, these nonaxisymmetric terms
vanish and the mean flow production of the wave can be written as

MW = MW
%;; mn (12)

9



with

. » U
Mwmn = J Unn¥mn 3r r dr + cc
0

Thus, the mean flow productions of the waves are given by the linear superposi-

tion of the individual mean flow productions of each wave.

In the turbulence energy equation (8), the energy exchange between the
waves and the turbulence WT 1is given by

P I e W (13)
1] axj roéd v ro

where the wave-induced stresses Fij = <u'u'> - u'u'. Now let us decompose r
in a manner similar to U: that is) L 1

TLr,e, 0 = D TonOGTexpl-ia t + iN ¢ + cc (14)
m,n

Thus, TU are generally given by

ru = Z (rmnur;n + cc) + Z{ rmu["{]kexp[i(Nk - NQ)¢] + cc} (15)
men m,k,2
k=2

The first summation is over the product produced by the same wave. The second
summation is over the product produced by two waves of the same frequency and
different azimuthal numbers. This second summation vanishes upon integration
over ¢. Thus, with the energy defined as integrated over ¢, we can write

T = D WT

&=t " mn
with
s
au. v W
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WTon = (rij,mn axj " "ee,mn t Tr Tre,mn|” ar ¢16)
0

Therefore, the turbulence energy exchange with the waves is given by the sum of
the energy exchanges between the turbulence and each individual wave.

10



Next, we consider the wave-wave interactions appearing in equation (9):
namely,

o]
au, v W
i,mn mn ~2 mn ~~
wwmn (<u1u3>mn —5;;—— - W >mn - <wv>mn)r dr an
0

Because of the time averaging and the azimuthal integration, these terms are
generally zero unless w and N simultaneously satisfy one of the following
sets of conditions:

wp = wk + wg and Np = N + Ng

or (18)

Nk - Ng

wp = wk - wg and  Nj

These are the same relations given by Cohen and Wygnanski (ref. 21). Unfortu-
nately, this is not quite a restrictive condition because if one starts with
only two frequency components, they can amplify other frequency components
that satisfy the conditions of equation (18). If the process is repeated, an
enormous number of frequency components can be amplified. The present analy-
sis is applicable to an unlimited number of components. However, for clarity
we present only the wave-wave interactions for a limited number of wave compo-
nents. We consider six wave components: three axisymmetric frequency compo-
nents and three first-helical frequency components. The frequencies of the
helical components match those of the axisymmetric components. These initial
wave components can interact with each other to generate an enormous number of
other frequency and azimuthal components. However, only the interactions among
these initial components are considered. Thus, we force other frequency and
azimuthal components to be identically zero.

The frequencies are chosen to satisfy the harmonic relations: that is

o, = )™, (19)

with m=1,2,3. Thus, each two consecutive frequencies are related to each
other by subharmonic-fundamental relations. The lower frequency denotes that
of the subharmonic, and the higher denotes that of the fundamental.

The conditions given by equation (18) on the frequency and azimuthal
number 1imit the number of nonzero wave-wave interactions. The wave-wave
interactions can be classified into three groups: (1) interactions among the
axisymmetric waves, (2) interactions among the helical waves, and (3) mixed
interactions between the axisymmetric and the helical waves. The general forms
of these interactions will be discussed. The interactions among the axisymmet-
ric waves can be manipulated to be in the form of subharmonic-induced stresses
multiplied by fundamental-induced strains. The interactions between the first-
helical and the axisymmetric components are formed by two subharmonic frequency
components of different azimuthal numbers interacting with the first-helical

11



fundamental component. The interactions among the helical modes produce non-
axisymmetric terms that vanish upon integrating over ¢. Thus, with the energy
defined as that integrated over ¢, the integrated interactions among the
helical modes are identically zero. This is an interesting result since it
indicates that, unlike the axisymmetric modes, two first-helical frequency com-
ponents cannot generate other frequency components. The energy exchanges among
the several scales of motion are represented schematically in figure 1. The
wave-wave interactions for the six components considered are given by the fol-
Towing equations:

For the axisymmetric w-component,
WH1o = -H10,10,20 + #21,11,10
For the axisymmetric 2w-component,
WH20 = W10,10,20 - W20,20,30 + W31,21,20

For the axisymmetric 4w-component,

WH30 = W20,20,30
(20)
For the first-helical w-component,

WH11 = -Hip0,11,21 - W21,11,10
For the first-helical 2w-component,

WH21 = Wyp,11,21 - W20,21,31 - W31,21,20

For the first-helical 4w-component,

WH31 = Wp0, 21,31

12



where

au av aw
~ mn o~ o~ mp o~ o~ mn
"ij,ke,mn = Uig%e Tax  * Vig¥ke Tax * MijUYke Tax

~ ~

du v awmn

~ ~ ~ ~ ~ ~

*Yi3%e Tar t Vigvke Tar Y Yi3Yke Tor

3 v o
1 [~ =~ mn ~ o~ mn ~ o~ mn
*r (uijka 3 T V1i"e T30t Yii"ke Tae )

'|~..~ ~ o~ e
+ (wijwkﬁvmn - Vij"kQ“mn) r dr @2n

Closure Models

The integral energy equations are used to obtain a set of ordinary differ-
ential equations representing the energy exchanges among the different scales
of motion. Each kind of motion is assumed to be describable with a limited
number of shape parameters. The shape assumptions for the mean flow, waves,
and turbulence required to perform the radial integrals in the energy equations
are discussed next.

Mean flow. - We describe the mean flow in terms of the momentum thick-
ness 6. The mean flow profile is the two-stage hyperbolic tangent profile
proposed by Michalke (ref. 22).

For © < 0.08,

1 for O0¢<rg¢l - g—
U(r,0) =

Nj—

1 § ®
{1 . tanh[26 a - r)]} for 1-%cr (22)

For © » 0.08,

ur,e = 3 {1 + tanh 55 (L - r)]} for O<r¢w

This profile fits the experimental data (e.g., refs. 23 and 24) for the mean
flow development between the jet exit and the fully developed region.
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The mean flow is thus characterized by the momentum thickness © rather
than by the axial distance x. Therefore functional dependency on x in the
integrals involved in the energy equations will be replaced by 6.

Random turbulence. - The radial distribution of the turbulent stresses is
assumed to be given by a Gaussian profile in the form

W] = ayy EQO G(8)exp(-n?)

where (23)

2 (r - 1?2
n" = —

e’c

This assumption is consistent with Lau's (ref. 25) findings based on correlat-
ing a large set of axial velocity fluctuations of unexcited jets over an
extended range of jet operating conditions. The term E(x) is the turbulence
energy, and aij and C are constants given by

ar] =1 azp = a33 = 0.5 aj2 = 0.33 a3 =33 =0 and C =20
(24)

This model is similar to that used by Mankbadi and Liu (ref. 6) and by Mankbadi
(ref. 7), but it has been modified to account for a given turbuience level in
the potential core. MWithin the potential core, the turbulence level is deter-
mined by its initial value at the exit of the jet. A normalization function
G(8) renders the fine-grained turbulence energy E(x) over a section of the
jet. Thus,

EC(X) = f qr dr)
0

and (25)

® 2
GO) = 1 (f exp(-nd)r dr + To>
0

for 6 ¢<0.08 and Ty = 0.

For ©>0.08 and T_ = 0.5 Gg§<1 - 0/0.08)2, Egg is the initial turbulence
intensity at the center of the jet exit.

This turbulence model is based on quasi-steady assumptions in which data
from steady-flow experiments are used to model the turbulence at unsteady con-
ditions. However, E(x) 1is determined later on from the nonlinear interac-
tions. The experimental data thus provide only the radial shape and the ratios
between the stresses. The shape and ratios may vary under excitation at high
frequencies. However, the interest here is within the jet column mode, the
so-called preferred frequencies, which in general are lower than those of the
shear layer instability frequencies. Therefore, for this range of frequencies

14



it is logical to assume that the ratios of the turbulent stresses are given by
their corresponding values for the steady-state case.

The viscous dissipation in the turbulence energy equation is related to
the small-scale turbulence as

a253’2 (26)

§

£ =
where az = 1.5.

In the present system of variables & 1is replaced by © where & = a36
and a3 = 4.4.

Wave components. - The momentum equation for each wave component mn s
obtained by subtracting the time-averaged momentum equation from the mn-phase
averaged momentum equation:

~ ~

au,

au au =5
i,mp ~— ""i,mmn ~ i i2 [~ ~2 ~2 = ~
ot *Y; 3 * U5 mn 8, T~ v <r¢¢,mn * WD W+ 2 wmn>
Elé (<wv> - 55 P + VW + AV )
T mn ér,mn m
ap —
mn 3 T =
- 'ax1 axg <<U1u3>mn - Uyl ¥ riJ,mn>
§, aw §:q [~ av
1 |q2~ _i2 s mny 13 (w mn
* Re [V u1,mn - ) (an -2 36 ) - ( mn - 2 3% )] 2N

where 875 1s Kroneker's delta.

If this equation is linearized and the terms containing Fij are
neglected, it can be simplified to the linear stability equation:

g e 1|2 12< __,_3 av
+ U, + U, = - , * Re [V u, 2 <w -2 }

@
[oF)
(3
=

2 3

(28

The shape assumptions for the wave components follow those of previous
works (refs. 6, 7, 26, and 27) in assuming that the Fourier coefficient upp
in equation (2) can be separated into an amplitude that is a function of «x
and a shape that is a function of r at a given location along the jet. In
these previous works, the complex radial shape was obtained from the linear
stability equation. In Mankbadi (ref. 7) the amplitude was obtained from the
nonlinear analysis while its phase angle was obtained from the linear analysis.

Experimental (refs. 17 and 28) and theoretical (refs. 15, 16, and 29)
investigations have indicated that nonlinear wave interactions are highly
dependent on the phase angles between the waves. Furthermore, the experimental
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data of Mankbadi, Raman, and Rice (ref. 28) clearly indicate that the develop-
ment of these phase angles is a highly nonlinear process. Therefore, previous
shape assumptions for the wave components are modified to

Ui o = IAmn(x)‘ui,mn(r,e)exp[i¢mn(x) - iwmt + 1Nn¢] + CC (29)

The radial shapes u(r,0) are given as the eigenfunctions of the locally par-
allel linear stability equation as before. However, now both the amplitudes
Amn and the phase angles wypn are determined from the nonlinear analysis.

As pointed out before, the linearized form of the momentum equation for
the mn-wave is simply the linear stability equation. Therefore, to a first

approximation ¢(x) is given by exp(ig /X «(E) d) where « is the complex
wave number corresponding to the frequency w. The radial shapes u(r,®) and
the corresponding complex wave numbers are obtained from the local linear sta-
bility theory. The fact that the radial shapes of the waves can be obtained
from the locally parallel stability theory was confirmed experimentally by
Strange and Crighton (ref. 30) and Wygnanski and Petersen (ref. 11).

The solution of the inviscid stability equation follows that given by
Michalke (ref. 22). 1In the damped region, a complex contour is used for the
numerical integration as in Mankbadi and Liu (ref. 6). The eigenfunctions are
normalized in such a way as to render Ap, the energy of the mn-wave in a
section of the jet. The arguments of the complex eigenfunctions are normalized
by taking the phase angle of u to be zero at the jet centerline. The phase
angle is therefore that of the streamwise wave velocity at the jet centerline.

Wave-induced stresses. - When the full form of the Fij equations is
linearized, it reduces to the same form as that of a single mn-wave component.
Therefore, it is modeled following Mankbadi and Liu (ref. 6) for the interac-
tion between the single~frequency component and the random turbulence. Based
on the linearized form, it can be shown that Fij takes the form

- 'Amn(x)‘E(x)ri. mnexp[i(\p(x) -~ t o+ iNn¢] + cC (30

r..
ij,mn j,

“he closure model for the wave-induced stresses follows that of the mean turbu-

lence quantities. Details of the model are given in Mankbadi and Liu (ref. 6).
The modeled linearized equation for rij is
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advection of mean stresses by wave work done by the mean stresses
against wave rates of strain
where AT'] =_-1.4453U/3r > 0 is the time scale for return to isotropy, rkk =
rxx + Trr + Tgp, and ' and D indicate differentiation with respect to r.

Nonlinear Interaction Equations
Rith the shape assumptions introduced in equation (3), the energy equa-
tions (eqs. (7) to (9)) can be integrated across the jet to yield the following
system of simultaneous ordinary differential equations.

The mean flow momentum thickness ©(x) is given by

dI
MA do
a6 dx = “ImtEe - %Z; MW, mnEmn (32)

Nj—
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The turbulence kinetic energy Et(x) is given by

d i 3/2
dx (ITAEt> = Iyrke + %E% Lrw mafmnft = LeBt (33

The energy of the mn-wave Emn(x) is given by

d_
dx (INA mn mn> LvEmn -~ IWT mnEmnEt * Wan (34)

and the phase angle wmn(x) is given by

¥ . .
Eanlwa dx = "mafmn * laMEan * Wan (35)

In this system of equations, I represents an integral that is, in
general, a function of the momentum thickness 6, frequency w, and the azi-
muthal number N considered. In the mean flow equation (32), IMp s the mean
flow advection integral given by

r dr (36)

The first term on the right side of equation (32) is the mean flow production
of the turbulence, and the second term is the production of each individual
wave. The mean flow production integrals of the random turbulence and the wave
component, Iy and Imy, respectively, are given by

@

2. au
Typ(8) = -a,,G(6) J expt-n®) A gr (37)
0
and
3
Lyt @ 6Ny = ‘[ Re< " mn) Hroar (38)
0

where Qe indicates the real part.

In the turbulence energy equation (33), Iypa s the integral of the turbu-
lence advection by the mean flow given by

I

* 2
ur(® = G(@)[jo U exp(-n“)r dr + To] (39)

The first term on the right side of equation (33) is the turbulence produced
by the mean flow. The second term is the turbulence energy exchanged with the
waves, and the last term is the viscous dissipation.
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The integrals Iyt and I, are given by

o

Lr(®p,N) = -2 ﬂe{rxx,mn““”mn) * Trr,mn'mn

0
- 1n"'7mn an ~ 1ann Gmn l
LS * —
* ool T T r ) Tre,ma| ¢ YT\ Tr
. 1nur‘;ln R . R
+ r;¢ — + 1awmn + r;r(iavmn + U')er dr (40)
and
3/2 3 2
I_(0) = (a,/a, 36> %(0) J exp(-2 n >r dr + T, a1
0
where ' denotes differentiation with respect to r,

T - (3722)3/2<1 -12.50)

In the energy equation for the mn-wave (eq. (34)), INA is the integral
for the wave advection by the mean flow:
o 2
INA(G,wm,Nn) = U |umnl +
0

~

2
o

2
wmnl r dr

The first term on the right side of equation (34) is the wave production
by the mean flow. The second term is the interaction with the turbulence. The
last term in equation (34) is the interaction of the mn-wave with other waves.
The term MWWy, s actually the sum of the interactions of the mn-wave with
other existing waves. It is given here only for waves with frequencies of w,
2w, and 4w and with azimuthal numbers of 0 and 1. Thus, for these six
waves WHWpn, takes the form
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WHyg = _E‘.O\IEZO "10.10.20 * 4E21811E10 Y21,11,10

WHyo = E10-\1520 %10.10.20 -~ 204830 ¥20,20,30 * 4F31521F20

NN3O = E20

WHyq = ‘\J 10E11E21 %10.11.21 — HE21E11E10 Y21,11,00 (42)
Wy ‘VIEloEnEm "10,11,21 ‘\1520521531 ¥90,11,21 _JENEZIEZO "31.21,20

WW

E30 %20,20,30

E,nEqqE

31 = 4520521531 Y20,21,31

where

Yig,k8,mn Z‘Iij,kﬂ,mnlcos<¢ij * ¥ " Yo * °ij,kQ,mn>

and where °1j,kQ,mn is the argument of I and

ij,k2,mn
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(43)
(* au Vo Wa W
~ e 131 V21%21Ys
I2,21,31 = (“1,2o“j,21 e T T )r dr
‘-0 j
i 3u.
I u —1L,10 o4

* o~
21,11,10 7 | Ui, 2145, 11 I
0

I = ] u* .. u* EEi*gg r dr
21,21,20 ~ i,3173,21 axj
‘0

The phase-development equation (35) is obtained in a manner similar to that of
Mankbadi (ref. 16). The Strouhal number S 1is defined as wpnd/(2nUg), where
d 1is the nozzle diameter; IQM is given by

' “x O BU
LM, mn = -;Z.J U Vo 50— T dr (44)
0

and Nwﬁn is identical to wwmn (eqs. (42) and (43)) except that it is the

imaginary part, and therefore the cos( ) term is replaced by sin( ): that
is,

iy.ke,mn = leij,ka,mnl51"<¢ij * Wy ¥t °ij,kQ,mn> (45)

This system of equations (eqs. (32) to (35)) is subject to the initial condi-
tions at x = 0: ©(0), E4+(0), and Epn(0), and to the initial phase angle
¥mn€0) with respect to a given reference.

TWO-FREQUENCY EXCITATIONS

Before we present the results for multiple frequency excitations, we
first compare the predictions of the present formulation with corresponding
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experimental data for the case of a turbulent round jet excited at two frequen-
cies. Under two-frequency excitations, control can be exercised over the ini-
tial energy levels as well as over the initial phase difference between the

two excitation components.

The solution of the system of nonlinear equations depends on the speci-
fied initial levels. Therefore, to compare the present predictions to the
experimental results, we obtain the initial conditions from the corresponding
experiment.

The calculated fundamental and subharmonic components at Strouhal numbers
of 0.3 and 0.6 are shown in figure 2 for several initial phase angles. When
only two waves are present, there is one initial phase-difference angle 8
between them. The initial momentum thickness is 0.026, and Eg5 = 0.0001. The
initial energies of the fundamental (S = 0.6) and the subharmonic (S = 0.3)
are taken such that the initial instability axial velocity components at the
jet centerline are 1.2 and 0.6 percent of the jet exit velocity. These values
were based on Bradley's data (ref. 13). Figure 2 shows that the fundamental
is not as sensitive to the phase difference as the subharmonic is. Bradley
measured the spectral amplitudes that were proportional to the energies
(ref. 13). His measured data behave similar to the predictions of figure 2.
The fundamental is less dependent than the subharmonic on the initial phase
angle. Bradley's measured maximum subharmonic ampliification occurs at
B = 180°, and the minimum subharmonic amplification occurs at B = 0°
(ref. 13), which is the same as the predicted results of figure 2.

Figure 3 compares the calculated centerline phase-averaged velocities with
the corresponding data of Arbey and Ffowcs-Williams (ref. 18). The Strouhal
numbers are 0.3 and 0.6, and Egy = 0.00001. The initial centerline velocity of
the S = 0.3 component is 1.5 percent of the jet exit velocity; the initial
centerline velocity of the S = 0.6 component is 0.38 that of the S = 0.3, as
in the experiment. At S = 0.3, the calculated peaks occur further downstream
than the data peaks (fig. 3(a)). However, the calculated peaks are at the same
velocity level as the data peaks. Both the theory and the experiment indicate
that the S = 0.3 component peak increases when @ changes from 0° to 180°.

The calculated phase-averaged velocities at S = 0.6 (fig. 3(b)) also have
the same features, the same level of amplification, and the same dependency on
the phase angle as the measured data. The measured component increases again
arter it decays, which is probably due to its interaction with other frequency
components - a mechanism which is not allowed here since frequency components
other than S = 0.3 and S = 0.6 are forced to be zero.

The dependency of the subharmonic amplification on the initial phase angle
is shown in figure 4 for Strouhal numbers of 0.2 and 0.4. The calculations
are shown in figure 4(a), and the corresponding measurements of Raman and Rice
(ref. 12) are shown in figure 4(b). In both cases the velocities are normal-
ized by the maximum attainable peak of the subharmonic. The initial levels are
Ufg = 7 percent, uso = 0.5 percent, and Eg5 = 0.005. At this high level of
excitation the acoustic decay is dominant in the first half diameter (ref. 12).
Therefore, Tam and Morris's (ref. 31) correction for the acoustic interaction
is used in the first half diameter. Figure 4 shows that both the measurements
and the theory predict a strong influence of the phase angle. The subharmonic
peak can be reduced to about one-third of its maximum attainable value depend-
ing on the initial phase difference between the two waves.

22



The calculated and measured momentum thicknesses are shown in figure 5
for the two-frequency excited and the unexcited cases. The initial conditions
are the same as those of figure 4. Figure 5 shows that two-frequency excita-
tion can considerably increase the jet mixing. However, the enhanced momentum
thickness is only weakly dependent on the phase angle. This indicates that the
direct role of the subharmonic in controlling the mixing of turbulent jets is
less pronounced than its role in advancing the mixing of laminar jets (refs. 5
and 16). However, the subharmonic can still have a strong indirect role in the
mixing process since it can control the background turbulence that, in turn,
controls the mixing process.

If both the fundamental and subharmonic initial energy levels are large,
their respective energy drain from the mean flow is also large. Therefore,
the wave-wave interactions become less significant. The dependency of the wave
amplification on the initial phase angles should be less pronounced. This phe-
nomenon is demonstrated in figure 6 where both waves have the same high initial
energy levels, lfy = Ugg = 3 percent. The Strouhal numbers are 0.3 and 0.6.
The present predictions of the subharmonic peak as a function of the initial
phase difference are shown in figure 6(a), and the corresponding data of Raman
and Rice (ref. 12) are shown in figure 6(b). The theory and observations both
indicate the same weak dependency on the phase angle.

According to the present analysis, the wave-wave interactions are depend-
ent on the energy levels. Therefore, increasing the initial energy level of
the fundamental, while keeping that of the subharmonic small, should increase
the peak of the subharmonic. The calculated subharmonic peak as a function of
the initial level of the fundamental is shown in figure 7(a). The Strouhal
numbers are 0.2 and 0.4, the initial velocity of the subharmonic is 1/15t
that of the fundamental, and the initial phase angle is kept at 270°. The cor-
responding data of Raman and Rice (ref. 12) are shown in figure 7(b). Both
theory and experiment indicate that the peak of the subharmonic increases as
the fundamental's energy level increases. The subharmonic reaches a satura-
tion value of about 20 percent.

MULTIFREQUENCY EXCITATION

The data of Moore (ref. 32) and Raman, Rice, and Mankbadi (ref. 33) indi-
cate that within the Strouhal number range 0.2 to 1.0, a forced-wave component
amplifies along the jet and can influence the growth rate of the jet. There-
fore, in the present study three frequencies, corresponding to Strouhal num-
bers of 0.2, 0.4, and 0.8, are considered. These Strouhal numbers were chosen
to cover jet excitability in the experimentally indicated range referred to as
the "jet column mode” (ref. 9). The next two sections present the results for
multifrequency excitation in the axisymmetric mode. In the first section
results for interactions with equal initial levels of all waves are presented.
In the succeeding section, results for variable ratios of initial energy levels
are presented.

Multifrequency Forcing at Equal Energy Levels

In this section, the initial energy levels of all waves are equal, and the
initial momentum thickness is taken to be 0.012. Since the focus here is on
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highly turbulent jets, the initial turbulence energy level is taken to be rela-
tively high E¢(0) = 0.005. With three interacting waves there are two initial
phase differences. The phase difference between S =0.2 and S = 0.4 is

By12 and that between S = 0.4 and S =0.8 is f23.

Figure 8 shows the energy peak of each wave component normalized by its
initial value as a function of the phase differences. The initial energy
Tevel (which is equal for the three waves) is varied from 10-6 to 5x10-3 in
figure 8(a) to (d). This range of initial energy levels corresponds to ini-
tial wave velocities of roughly 0.001 to 0.07 Ua. A comparison of part (a) of
figure 8 with parts (b) to (d) indicates that the dependency on the phase
angle increases-as the initial energy level increases. This trend is expected
since the wave-wave interaction is a nonlinear process. At low levels
(fig. 8(a)), each wave grows almost independently of the other waves. At
higher energy levels (fig. 8(c)), the energy peak can be doubled depending on
the phase angle, indicating strong nonlinear interactions.

A comparison of parts (a) to (d) of figure 8 also indicates that the maxi-
mum attainable normalized peak decreases as the initial energy levels increase.
This fact is demonstrated in figure 9, which shows the maximum attainable peak
(depending on the combination of phase differences) as a function of the ini-
tial energy level. Figure 9 indicates that at low initial energy levels the
peak varies in accordance with the linear theory. However, the rate of growth
decreases with higher energy levels, and saturation conditions are reached
around energy levels of 0.005 to 0.01. Further increases in the initial energy
level damp the forced component.

The maximum attainable (depending on the phase angles) momentum thickness
along the jet is shown in figure 10 for several initial energy levels. This
figure shows that the higher the initial energy level, the greater the mixing
rate enhancement due to excitation. Since we are interested in enhancing the
mixing and since the saturation is limited as shown in figure 9, E5 = 0.005
seems to be the optimum value. Therefore, multifrequency forcing at
Eo = 0.005 1is examined further in figures 11 to 21.

To examine the role of multifrequency forcing on jet mixing, we use three
nhase-difference combinations but keep the other initial conditions fixed
“figs. 11 to 16). In figures 11 and 12 the phase differences @12 and B23
are 0° and 90°, respectively. Figure 11 shows the energies of the three fre-
quency components and indicates that S = 0.4 is the most amplified component
along the jet. The mean flow productions of the wave components and of the
turbulence are shown in figure 12. The sum of these productions determines
the growth rate, and hence the mixing rate, of the jet. The mean flow produc-
tion of the turbulence for the unexcited case is also shown in figure 12. Fig-
ure 12 shows that the production of the three waves is important in the initial
region of the jet. But further downstream beyond x = d, the production of the
turbulence dominates.

In figures 13 and 14 the phase angles Bj12 and B3 are 30° and 180°,
respectively. The energies of the waves are shown in figure 13, which indi-
cates that the S = 0.4 component is less amplified than it is in figure 11.

The mean flow productions are shown in figure 14, which also indicates that the
turbulence production is the dominant mechanism beyond x = d. The case of
B12 = 270° and B3 = 180° is shown in figures 15 and 16. Figure 15 shows
that for this combination of phase differences S = 0.2 is the most amplified
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component along the jet. The corresponding mean flow productions are shown in
figure 16. This figure also shows that turbulence production is the dominant
mechanism. A comparison of the turbulence produced by the mean flow for the
excited and unexcited cases (fig. 16) shows that multifrequency excitation can
considerably increase the random turbulence produced by the mean flow.

The momentum thickness along the jet is shown in figure 17 for the three
pairs of phase-difference combinations that were presented in figures 11 to 16.
Figure 17 shows considerable enhancement in the momentum thickness for the
three cases considered. In the case of {12 = 90° and f23 = 0°, the momen-
tum thickness around x = 4d 1is greater than for Bj2 = 90° and @23 = 180°
because the S = 0.4 component is amplified more in the former case than in the
latter case (fig. 11 versus fig. 13). Fiqgure 17 also shows that the momentum
thickness is most enhanced when {32 = 270° and B33 =180°. For this case
S =0.2 is the most amplified component (fig. 15). This low Strouhal number
wave has the longest streamwise lifespan, and therefore it is the most effec-
tive in enhancing mixing at downstream locations.

Figure 18 shows the turbulence energy along the jet for the phase-
difference combinations in figure 17. The turbulence energy for the unexcited
case is also shown on figure 18. The turbulence is enhanced because of the
forcing. Note also that forcing at different phase-difference combinations
has the same effect on the turbulence as it does on the momentum thickness
(fig. 17).

In laminar jets, where turbulence is negligible, the growth rate is dic-
tated by only the production of the waves. Therefore subharmonic amplification
or damping would have a pronounced effect on the jet growth rate (refs. 5 and
16). For turbulence jets where the growth rate is governed by the production
of the turbulence and the waves, the situation is different. As indicated by
figures 12, 14, and 16, the turbulence production is the dominant mechanism in
controlling the growth rate. The direct role of wave amplification in the
growth rate is not pronounced for the turbulent jets as it is for the laminar
jets. The forced waves, however, enhance the random turbulence and therefore
still play an indirect role in the mixing process.

The turbulence enhancement of the random turbulence that was shown in
figure 18 is evident in the early experiments of Binder and Favre-Marinet
(ref. 3). The mechanism of turbulence enhancement under multifrequency excita-
tion is examined here. The energy pumped into the turbulence by the waves and
the mean flow are shown in figures 19 to 21 for three different pairs of phase-
difference combinations. These figures show that turbulence enhancement under
excitation is a result of a direct and an indirect mechanism. In the direct
mechanism, the imposed waves decay by dissipating their energy into the back-
ground turbulence (the second term in the turbulence energy equation,
eq. (33)). In the second indirect mechanism, the wave acts as a catalyst that
enhances the mean flow production of the turbulence. Note that in figures 19
to 21, the mean flow production of the turbulence for the excited case is much
higher than that in the unexcited case. The mean flow production of the turbu-
lence is proportional to the local level of the turbulence energy (the first
term in the turbulence energy equation (eq. (33))). Therefore, wave-produced
enhancement in Ey further increases the mean flow production of the turbu-
lence EtIM7. Thus, the mean flow production of the turbulence is increased
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by excitation. In figure 21, the S = 0.2 component, which has a long stream-
wise lifespan, is amplified. This wave keeps pumping energy to the turbulence
for a long distance along the jet and causes the greatest enhancement in the
mean flow production of the turbulence.

Forcing at Variable Initial Energy Ratios

In the previous section we considered the case of forcing at equal energy
levels. In the next section, we consider the case when one of the waves has an
initial energy level that is one order of magnitude lower than the other two.
In the succeeding section, we consider the case when one of the waves has an
initial energy level that is one order of magnitude higher than the other two.

One wave initially weaker than the other waves. - The peak of the three
waves as a function of the initial phase anglies are shown in figure 22. In
figure 22(a) the S = 0.8 wave is initially an order of magnitude smaller than
the other two. In figure 22(b), the S = 0.4 wave is the weak one, while in
figure 22(c), the S = 0.2 wave is the weak one. In figure 22(a), the S = 0.8
component is negligible with respect to the other two waves. Therefore the
S =0.2 and S = 0.4 waves behave as in the case of two-frequency excitation.
When S = 0.4 is the weak wave, figure 22¢(b), it still amplifies considera-
bly. The S = 0.4 wave has a Strouhal number near that of the most amplified
wave. Furthermore, this wave interacts directly with the other two waves.
Considerable wave interactions occur that can amplify the S = 0.4 wave to the
same level as that of the other two waves. When S = 0.2 1is the weak wave,
the S = 0.2 wave is not amplified and the other two waves, S = 0.4 and
S = 0.8, behave as if the third wave were not present at all (fig. 22(c)).

The turbulence energy along the jet is shown in figure 23 for the initial
energy ratios of figure 22. Note that the figure indicates that the S = 0.2
component must be present to have a considerable effect on the turbulence
because of the long streamwise lifespan of the S = 0.2 component, as indicated
before. The figure also shows a greater effect on the turbulence when the two
high~level waves are S = 0.8 and 0.4, instead of S = 0.2 and 0.4. As indi-
cated befere, when the S = 0.8 and S = 0.2 waves are high, they excite the
S = 0.4 component and thus act effectively as three-frequency excitation.

This mechanism is not present when the two high-amplitude waves are S = 0.2
and 0.4.

The momentum thickness along the jet is shown in figure 24 for the same
initial values as in figure 23. Figure 24 shows that the effect of excitation
on the momentum thickness follows the same pattern as the effect of excitation
on the turbulence. This indicates again that it is the turbulence that con-
trols the mixing enhancement.

One wave initially higher than the other waves. - One wave was given a
high initial energy level of E5 = 0.005 while the other waves were kept an
order of magnitude lower (i.e., E5 = 0.0005). Although this is a case of mul-
tifrequency interactions, it can represent the experimental situation when only
one frequency is forced. In an unexcited jet, there are several stability com-
ponents that are naturally present. In an excited jet, the excitation wave can
interact with other naturally present waves at other frequencies and amplify
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them (e.g., ref. 9). The low initial energy level of E5 = 0.0005 can repre-
sent that of the naturally present waves.

Figure 25 shows the energy peak for each frequency component as a function
of the phase-difference angles. In figure 25¢(a) the S = 0.8 component is the
high-amplitude wave. It produces some amplification of the S = 0.4 component,
which in turn can enhance the S = 0.2 component. In figure 25(b), the S = 0.4
component is the high-amplitude wave. It can enhance the S = 0.2 component if
the phase difference between them is 270°, but it has a negligible effect on
the S = 0.8 component. In figure 25(c), the S = 0.2 component is the high-
amplitude wave. The S = 0.4 component interacts with both the S = 0.2 compo-
nent and the slightly amplified S = 0.8 component.

The turbulence energy is shown in figure 26. The initial phase angles
that produced the greatest effect on the turbulence were chosen for a given
high-amplitude excitation at a given frequency. At x < d, the S = 0.8 compo-
nent produces the highest effect on the turbulence. The S = 0.8 component
amplifies very close to the jet exit and therefore is effective in pumping
energy from the mean flow to the turbulence in this region. If one considers
the region x > d, the S = 0.2 component is the most effective in pumping
energy from the mean flow to the turbulence. The S = 0.2 component peaks fur-
ther downstream and has the longest streamwise lifespan. Therefore, the high-
frequency components are effective in enhancing the turbulence in the initial
region of the jet while the low-frequency components are effective further
downstream. The momentum thickness for the cases in figure 26 are shown in
figure 27. Figure 27 shows that the effect of frequency on the momentum thick-
ness follows the effect of the frequency on the turbulence. This again indi-
cates that the turbulence is the effective mechanism for turbulence enhancement
of excited turbulent jets.

Figures 28 to 33 show the energy of the frequency components and the cor-
responding turbulence productions for the three cases presented in figures 26
and 27. In figure 28, S = 0.8 1is initially the highest component; it ampli-
fies in the initial region of the jet. Figure 29 shows that the S = 0.8 wave
component pumps considerable energy into the turbulence in the initial region
of the jet. As a result of this energy transfer, the mean flow production of
the turbulence is also enhanced. When the high energy is in the S = 0.4 compo-
nent (figs. 30 and 31), the behavior is similar to that when S = 0.8 1is the
high component. However, the high S = 0.4 component peaks further downstream.
As a result, the enhancement of the mean flow production of the turbulence in
figure 31 is delayed in comparison with the corresponding enhancement in fig-
ure 29. Note also that when S = 0.4 is the high-amplitude component, it
dampens the S = 0.8 component (fig. 30). Therefore the S = 0.8 component plays
a negligible role in pumping energy from the mean flow to the turbulence. When
S =0.2 is the high-amplitude component, the other frequencies are amplified
slightly (fig. 32). 1In figure 33 all waves pump energy to the turbulence.
Furthermore, because of its long streamwise lifespan, the S = 0.2 component
keeps pumping energy to the turbulence along the jet. As a result of this con-
tinuous increase in the turbulence energy, the mean flow production of the tur-
bulence is also considerably enhanced. Apparently, if the S = 0.2 component
can be amplified through its interaction with other frequency components, it
can have a considerable effect on the turbulence.
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CONCLUSIONS

The interactions among several stability waves in a turbulent round jet
were examined based on the integrated energy in a section of the jet for the
different scales of motion. The present formulations indicate that if only
axisymmetric wave components are present, two frequency components with high
amplitudes can interact with each other as well as with other background-
frequency components and can generate an enormous number of other frequency
components in the axisymmetric mode. If the frequency components present are
only in the first-helical mode, two frequency components in the first-helical
mode cannot interact directly with each other or with other first-helical fre-
quency components. However, if both the axisymmetric and the first-helical
component are simultaneously present with frequency components related by
fundamental-subharmonic relations, mixed interactions between the axisymmetric
and the helical mode occur. These mixed interactions amplify other frequencies
in both the axisymmetric and the helical modes.

The present predictions for two-frequency axisymmetric excitation produce
results consistent with those from several published experiments. MWhen a jet
is excited at fundamental and subharmonic frequencies with the fundamental
level higher than that of the subharmonic, the amplification of the subharmonic
greatly depends on the initial phase difference between the two waves. This
dependency on the initial phase angle becomes less pronounced if both compo-
nents have high initial energy levels. Two-frequency excitation enhances the
momentum thickness in accordance with observations.

If a jet is forced with multifrequency components of equal initial energy
levels, the nonlinear process depends on the initial level. At low energy lev-
els, nonlinear interactions are negligible, and each wave behaves as if the
others were not present. Increasing the initial energy level equally for all
waves results in considerable nonlinear interactions. At much higher initial
levels, a saturation condition is reached in which the waves can no longer
amplify each other. 1Increasing the initial energy level increases the momentum
thickness of the jet until the saturation condition is reached.

Examining the energy exchanges at high forcing levels of equal magnitudes
for all the waves indicates several interesting features. The enhancement in
the momentum thickness is dominated by the mean flow turbulence production,
rather than by the fundamental-subharmonic interactions as in the laminar case.
Multifrequency forcing of the jet enhances the turbulence through two mechan-
isms. In the direct mechanism, the imposed waves decay by dissipating their
energy into the background turbulence. In the second indirect mechanism, the
wave acts as a catalyst that enhances the mean flow production of the turbu-
lence. The turbulence produced by the mean flow is proportional to the local
level of the turbulence energy. Therefore, wave-produced enhancement in the
turbulence energy further increases the turbulence produced by the mean flow.
Thus, excitation enhances the mean flow production of the turbulence.

The role of the frequency on the nonlinear process was examined by
varying the ratios of initial energy levels between the frequency components.
Two-frequency excitation at high and low frequencies can result in considerable
amplification of the intermediate frequencies. Thus, proper two-frequency
excitation can be as effective as three-frequency excitation.
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By taking the initial energy level of one of the frequency components to
be much Tlarger than the others, we demonstrated that high frequencies are
effective in pumping energy from the mean flow to the turbulence. Low fre-
quencies have longer streamwise lifespans and therefore are more effective in
pumping energy from the mean flow to the turbulence at locations further

downstream.
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APPENDIX - SYMBOLS
amplitude
constants
complex conjugate
differentiated with respect to r
nozzle diameter
turbulence dissipation
energy
initial energy level
energy peak
turbulence energy
normalization function
integral that is a function of 6, w, and N
mean flow advection integral
mean flow production integral of the random turbulence
mean flow production integral of the wave component
turbulence advection integral
wave advection integral
imaginary
variables
mean flow production of turbulence
mean flow production of wave components

azimuthal number
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WT

WW

pressure
kinetic energy of the wave

kinetic energy of the turbulence

nozzle radius

Reynolds number

real part

radical coordinate

wave-induced stresses

Strouhal number

time scale for return to isotropy

0.5 uj2(1 - 6/0.08)2

time

velocity

time-averaged motion

peak velocity

streamwise velocity

background, fine-scale random turbulence

periodic component

periodic component at fundamental frequency
periodic, organized, large-scale wave-shaped motion
mean radial velocity

radial velocity

azimuthal velocity

energy transfer between the waves and the turbulence
interaction between one wave and other existing waves
azimuthal velocity (angular velocity)

axial distance
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B12

¥

w
Subscripts:
e

f
i,j,k,2,m,n
MA

MT

ocC

sp
TA

WA

™

complex wave number corresponding to frequency

initial phase-difference angle
initial phase difference between §j
initial phase difference between S
displacement thickness

Kroneker's delta

viscous dissipation

momentum thickness

fluid density

argument of I

azimuthal angle

phase angle

frequency

jet exit

fundamental frequency
variables

mean flow advection
mean turbulence
initial conditions
exit, centerline
subharmonic
subharmonic peak
turbulence advection
turbulence (p. 28)
wave advection

axial coordinate
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and Sp
and Sj

W



Superscripts:

usual time average of the flow quantity
wavelike

complex conjugate

eigenfunction

differentiated with respect to r
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(b) STROUHAL NUMBER. S. 0.3.
FIGURE 2. - DEPENDENCY OF STABILITY ON THE INITIAL PHASE ANGLES. B.
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FIGURE 5. - DEVELOPMENT OF MOMENTUM THICKNESS UNDER TWO-FREQUENCY EXCITA-
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FIGURE 11. - DEVELOPMENT OF THE ENERGY OF EACH FREQUENCY
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FIGURE 13. - DEVELOPMENT OF THE ENERGY OF EACH FREQUENCY
COMPONENT (THREE STROUHAL NUMBERS, S) ALONG THE JET AT
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FIGURE 14, - MEAN FLOW ENERGY DRAIN TO THE WAVES (THREE
STROUHAL NUMBERS. S) AND TURBULENCE AT EQUAL INITIAL
ENERGY LEVELS, E;=0.005. INITIAL PHASE DIFFERENCES:

Byp = 90°%: Byg = 180°.

FIGURE 15. - DEVELOPMENT OF THE ENERGY OF EACH FREQUENCY
COMPONENT (THREE STROUHAL NUMBERS, S) ALONG THE JET AT

EQUAL INITIAL LEVELS. E, = 0.005.

ENCES: Byp = 270°: B,z = 180°.
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FIGURE 20. -~ TURBULENCE PRODUCTION BY THE MEAN FLOW AND
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FIGURE 21. - TURBULENCE PRODUCTION BY THE MEAN FLOW AND
WAVES (THREE STROUHAL NUMBERS, S). EQUAL INITIAL ENERGY
LEVELS. Ey = 0,005, [INITIAL PHASE DIFFERENCES: By =
270°%; Bys = 180°.
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FIGURE 22. - EFFECT OF INITIAL PHASE DIFFERENCES, PB4, AND 623,

ON THE PEAK OF EACH FREQUENCY COMPONENT (THREE STROUHAL NUMBERS.

S). NONEQUAL INITIAL ENERGY LEVELS.
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FIGURE 23. - TURBULENCE ENHANCEMENT UNDER VARIABLE RATIOS

OF INITIAL ENERGY LEVELS, CASE A: INITIAL PHASE DIFFER-
ENCES, Byp=270%: Byg=00: INITIAL ENERGY LEVELS. Eqq =
0.005; Epq= 0.005: Ez5= 0.0005. CASE B: Pyp= 270%:
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FIGURE 24. - MOMENTUM THICKNESS ENHANCEMENT UNDER VARIABLE

RATIOS OF INITIAL ENERGY LEVELS. CASE A: INITIAL PHASE
DIFFERENCFS, Byp = 270°; Bz = 0%: INITIAL ENERGY LEVELS,
Eqq = 0.005: Epq = 0.005; Egy = 0.0005. CASE B: Byp =
270%; Byz = 00 Eq = 0.005; Epp = 0.0005: Ezp = 0.005.
CASE C: Byy = 2709: Byg = 2700: Eqq = 0.0005: Egy = 0.005;
Egq = 0.005.



ENERGY PEAK, Ep

(c) INITIAL ENERGY LEVELS:

FIGURE 25. - EFFECT OF INITIAL PHASE DIFFERENCES, By, AND By3. ON
THE PEAK OF EACH FREQUENCY COMPONENT (THREE STROUHAL NUMBERS. S).
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FIGURE 26, - TURBULENCE ENHANCEMENT UNDER VARIABLE RATIOS
OF INITIAL ENERGY LEVELS. CASE A: INITIAL PHASE DIF-
FERENCES. Byp=270°; Pyz=90%: INITIAL ENERGY LEVELS.
Eqo= 0.0005: Epp=0.0005: E3y=0.005. CASE B: By,= 270
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GURE 27. - MOMENTUM THICKNESS ENHANCEMENT UNDER VARIABLE
RATIOS OF INITIAL ENERGY LEVELS. CASE A: INITIAL PHASE
DIFFERENCES. By, =2707: Pyz=907; INITIAL ENERGY LEVELS,
Eqg=0.0005: Epg=0.0005; Ezg=0.005. CASE B: By,= 270°;

By3=180°: E41=10.0005; Epy=0.005; Ego= 0.0005. CASE C:
By, =2700; B,z =270 E,0= 0.005; E,n= 0.0005; Exo= 0.0005.
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FIGURE 30. - DEVELOPMENT OF THE FREQUENCY COMPONENTS AT

NONEQUAL INITIAL ENERGY LEVELS: Eqp = 0.0005: Epg =
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FIGURE 32. - DEVELOPMENT OF THE FREQUENCY COMPONENTS AT
NONEQUAL INITIAL ENERGY LEVELS: Eqq = 0.005; Epp =
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FIGURE 29. - TURBULENCE PRODUCTIONS BY THE MEAN FLOW AND
WAVES AT NONEQUAL INITIAL ENERGY LEVELS: €44 = 0.0005;
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FIGURE 31. - TURBULENCE PRODUCTIONS BY THE MEAN FLOW AND
WAVES AT NONEQUAL INITIAL ENERGY LEVELS: Eqp= 0.0005:
Eyn=0.005: Exq=0.0005. INITIAL PHASE DIFFERENCES:
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FIGURE 33. - TURBULENCE PRODUCTIONS BY THE MEAN FLOW AND
WAVES AT NONEQUAL INITIAL ENERGY LEVELS: Eqq = 0.005:
Egp = 0.0005; Egy = 0.0005. INITIAL PHASE DIFFERENCES:

20 ~ 0:0005; E39 = O
By = 270°: By3 = 270°.
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